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An accurate numerical calculation of the ground-state entropy associated to two-
dimensional ± J Ising lattices is presented. The method is based on the use of
the thermodynamic integration method. Total energy is calculated by means of
the Monte Carlo method. Then the entropy (or degeneracy) of a state of interest
is obtained by using thermodynamic integration starting at a known reference
state. Results for small sizes are compared to exact values obtained by exhaus-
tive scanning of the entire ground-state manifold, which serves as a test for the
reliability of the simulation model developed here. The close agreement between
simulated and exact results for energy and remnant entropy supports the vali-
dity of the technique used for describing the properties of ± J Ising lattices at
the fundamental level. Finally, the results are extrapolated in order to estimate
tendencies for larger systems.
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method; ± J Hamiltonian; frustration.

1. INTRODUCTION

In many complex systems, evaluation of thermodynamic properties is a
difficult matter. In the case of ± J Ising lattices it is even more so, due to
the highly degenerate fundamental level as a consequence of two factors:
(i) frustration and (ii) randomness. (1, 2) An analytic exact solution yielding
the low-energy portion of the density of states (to mention just one
example) is nearly impossible. Then it is necessary to shift to precise
numerical calculations in order to calculate thermodynamic quantities such



as free energy and entropy. However, the difficulty of reaching solutions of
desired accuracy increases with lattice size. In the present paper, we aim to
apply a method that leads to accurate descriptions of the just-mentioned
thermodynamic variables for square lattices, even when temperature
approaches zero and only states of the ground manifold (GM) are
populated. For this extreme case, we have at our disposal exact results for
small samples, which can be used for comparison to establish criteria to
reach results of prescribed precision.

In fact, one difficult task in this work is to characterize the GM to
calculate properties of these systems at extremely low temperatures. So far
this has been done following two lines of thought: on one hand, exact cal-
culations based on exhaustive scanning of the whole GM (3–7) and on the
other hand, numerical techniques based on the analysis of a representative
set of states belonging to the GM. (8–15) The number of states of the GM at
the thermodynamic limit constitutes a very severe limitation for both
descriptions. In fact, upon increasing the size of the system, the degeneracy
of the GM grows exponentially. Thus, the huge computer time needed in
either case makes these approaches nearly impossible.

Several authors have discussed the applicability of numerical algo-
rithms for determining thermodynamic properties such as entropy. Without
attempting a complete review of the field, let us mention here the attempt
by S. Kirkpatrick (16) (among others) using Monte Carlo (MC) simulation
techniques. Then, J. Vannimenus and G. Toulouse (17) made progress in the
field taking advantage of the topological properties of the system. Some
other authors, such as I. Morgenstern and K. Binder, (18) H.-F. Cheung and
W. L. McMillan, (19) and A. J. Kolan and R. G. Palmer, (20) made important
contributions using transfer matrix calculations. More recently, A. K.
Hartmann (21) has explored the configuration space of these systems by
means of a ballistic-search algorithm and genetic cluster-exact approxima-
tion (CEA). These diverse approaches have obtained different representa-
tive values for the entropy of the GM in the thermodynamic limit. In
particular, in ref. 16 the evaluation of the remnant entropy has been
determined via numerical implementation of the well-known ‘‘thermody-
namic integration method’’ (TIM). (22) This pioneering work was one of the
first reliable calculations of entropy associated to the GM. The disagree-
ment between the numerical value proposed in that early work and those
reported in more recent contributions can be attributed to the limited
observation times used in the early work in comparison with the character-
istic relaxation time scale of the phenomenon.

In this context, the main aim of the present work is to reformulate the
use of the TIM and to show that it is able to determine accurate values for
thermodynamic quantities associated to the GM of ± J Ising lattices. This
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approach will be applied here to ground-state properties of two-dimen-
sional (square) lattices. Even when absolute precision is lost, we will estab-
lish the main sources of error, thus making it possible to produce criteria
for controlling accuracy. In particular, we address the following three
issues: (a) testing the accuracy and correctness of our algorithms by com-
paring results with previous exact calculations for small lattice sizes; (3, 7) (b)
establishing criteria to obtain reliable results for energy and entropy for
larger systems; (c) formulating general conclusions about the applicability
of this method to describe systems of larger size and higher dimensionality.

The article is organized as follows. In Section 2, the ± J Ising spin
model is presented. The TIM procedure is described in Section 3, which
also includes a discussion concerning numerical errors. In Section 4, we
shall present results and discussions. Conclusions are summarized in
Section 5.

2. ±J ISING LATTICES

Let us consider magnetic centers with two possible spin orientations
sitting at the sites of a regular lattice interacting in pairs among nearest
neighbors by means of interactions of mixed signs. This is the classical ± J
Ising problem also known as the Edwards–Anderson ± J model. (1, 2, 23) We
will focus on two-dimensional lattices, actually square lattices which are the
most popular ones. However, extension to other geometries and higher
dimensions should not represent formal problems. Such lattices have been
studied very often as models for spin glasses, (2, 24, 25) and their connections
extend to other branches of physics and statistical mechanics. (1) Competing
interactions cannot be simultaneously satisfied, bringing in frustration.
A frustrated bond is an exchange interaction contributing positively to the
total energy of the system.

We shall describe these systems by means of the Ising Hamiltonian

H= C
N

Oj, kP
Jjksjsk, (1)

where the sum runs over all pairs of nearest neighbors and all exchange
interaction Jjk have the same magnitude J that can take the values +1
[antiferromagnetic (AF)] or −1 [ferromagnetic (F)]. The size of the
lattice is represented by N, the total number of spins distributed in rectan-
gular (eventually square) arrays. In particular, we restrict ourselves to equal
concentration of AF and F interactions, which is not a limitation to the
application of the TIM in any way. The actual distribution of N AF bonds
and N F bonds will be done at random over (2N)!

N!2 realizations to generate a
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set of representative samples for each size. Each sample is a particular
array of ± J interactions. sj represents the z component of spin at the jth
site, which can be +1 or −1 for the sake of simplicity. Periodic boundary
conditions are assumed to keep the coordination number constant through
the lattice.

The complete solution for this Hamiltonian can be found by enu-
merating all the 2N states (or 2N − 1 due to the inversion symmetry of H).
However, as has already been pointed out, such a method could need
computer times that increase exponentially with N. Hence, the need for
alternative methods relying on accuracy rather than completeness.

The ground-state energy is a magnitude that is size dependent. Thus,
we will prefer to work with an intensive variable such as the ground-state
energy per bond of each sample: Ui(N) for the ith sample. Then the
average GM energy can be given by

UM(N) — OUi(N)P; (2)

the symbol O · · ·P is used here (and in the rest of this paper) to represent the
average value of a magnitude over a set of M randomly generated samples
of a given size.

Due to the combined effect of randomness and frustration, the GM is
highly degenerated. For a given sample, the number of configurations with
the same ground energy is 2Wi (an even number due to the above-men-
tioned inversion symmetry of the Hamiltonian). It is possible to define the
GM entropy per bond for each sample as Si=

ln(2Wi)
2N . For simplicity, we

have used kB=1 throughout the text. Then, the GM average entropy per
bond, SM(N), is given by

SM(N) — OSi(N)P. (3)

3. THERMODYNAMIC INTEGRATION METHOD

3.1. Procedure

In order to calculate the entropy of a given sample (which is due to the
density of states of the system), various methods have been developed. (26–32)

Among them, the TIM is one of the most widely used and practically
applicable. (22, 33–36) The method relies upon integration of the total energy as
function of temperature along a reversible path. The initial point corre-
sponds to an arbitrary but known reference state, while the final point
corresponds to the state for which entropy is needed. Let us begin from the
thermodynamic expression:

1
T

=1 “S
“U

2
N

, (4)
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where the system is characterized by its number of spins N at a tempera-
ture T with a total internal energy U(N, T) and entropy S(N, T). Denot-
ing by t the dummy integration variable corresponding to temperature, we
can now integrate Eq. (4) between two different equilibrium states, which
leads to

S(N, T) − S(N, TR)=F
U(T)

U(TR)

dU
t(N, U)

=
U(N, T)

T
−

U(N, TR)
TR

− F
1/T

1/TR

U(N, t) d 11
t
2 . (5)

In order to determine the numerical value of the entropy at an equilibrium
thermodynamic state characterized by coordinates N and T, knowledge of
the entropy for a reference thermodynamic state, S(N, TR), is required. In
practice, calculation of S(N, TR) can present a severe restriction for many
complex systems. (35, 36) Fortunately, for any Ising system comprising N
spins, all its 2N states are possible at infinite temperature, so entropy
evaluated at TR Q . is trivially given by

lim
TR Q .

S(N, TR)=ln 2N. (6)

Thus, according to Eqs. (5) and (6), for a particular sample GM entropy
per bond can be obtained as:

Si(N)=
ln 2N

2N
+F

0

.

Ui(N, t) d 11
t
2=

ln 2
2

+Ii(N). (7)

The intermediate steps to reach this result are given in Appendix A.
Numerical evaluation of the integral Ii(N) is the key element to

finding the ground (remnant) entropy. To perform such an evaluation, we
make use of two successive procedures: (a) MC simulation and (b) numer-
ical integration technique.

MC simulation is used in this case to determine the average energy for
n intermediate thermodynamic states between an initial condition (TR=.)
and a final one which we set at the GM (T=0). This is illustrated in Fig. 1
for a particular sample containing N=16 spins. Each point in the curve
has been obtained by doing MC simulation based on Glauber’s dyna-
mics. (37) Thus, each spin is accessed randomly and the probability that it
will flip is determined by the standard Metropolis algorithm. (38, 39) A Monte
Carlo step (MCS) is equal to N such flip attempts. ro(N) MCSs are used
to reach thermodynamic equilibrium at the temperature T, as will be
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Fig. 1. |J|/T versus the mean total energy per bond (in units of the interaction constant |J|)
for the case N=16. Simulations were carried out by using Glauber’s dynamics. Symbols
represent average values over typically 2 × 104 MC configurations, after reaching equilibra-
tion.

discussed in detail below. Then r additional MCSs are performed to obtain
average values for the energy.

Once such a discrete curve formed by n points is obtained for a par-
ticular sample, numerical integration techniques are invoked to evaluate
the RHS of Eq. (7). We used standard numerical algorithms to perform
this integration. (40) Under these considerations, the values of entropy are
affected with errors on both n and r. Due to the importance that such
errors may have in the interpretation of our results, we discuss this matter
in the next subsection.

3.2. Numerical Errors

Accuracy in the determination of the integral in Eq. (7) is improved if
numerical errors are minimized. We review next the three main possible
sources of error.

(a) Integration error (IE), which is derived from the numerical tech-
nique used for evaluation of the integral in Eq. (7).

(b) Simulation error (SE), which originates in the calculation of
average energy for each sample at any T. This error is controlled by
parameters r and N.

(c) Sampling error (SAE) associated to choosing the set of M repre-
sentative samples for each N.

Let us now study each source of error separately. We will define below
numerical constants A, B, C, and D, each one related to a different source
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of error, so they will be evaluated by statistical methods applied to different
distributions of numerical results. This analysis is done here for complete-
ness so the role of each possible source of error is better understood.

The trapezoidal approximation technique (40) is widely used for numer-
ical evaluation of integrals of continuous functions. Basically, an interval is
divided into several segments. Thus, the integral of any function f(x)
defined in the interval [a, b] can be written as

F
b

a
f(x) dx=

h
2
5f(a)+f(b)+2 C

n − 1

l=1
f(xl)6−

(b − a)
12

fœ(l) h2, (8)

where h=(b − a)/n is the width of each segment, xl=a+hl is the begin-
ning of the lth segment, l is any point within the segment and fœ(l) is the
second derivative of f evaluated within the segment. The last term on the
RHS of this equation is the systematic error in the process.

By using this methodology, the integral in Eq. (7) can be expressed as

Ii(N)=−
2
n
5Ui(N, T0)+Ui(N, TR)+2 C

n − 1

l=1
Ui(N, Tl)6+

16
3n2 U'

i (N, y), (9)

where the integration interval has been defined between the limits TR=.

(b=0) and T0=0.25 (a=4), and y is a point between these two cases. The
lower limit, T0, is the maximum value of temperature at which the finite
system remains in the GM during the observation time (r).

Now, we rewrite Eq. (7) as

Si(N)=
ln 2

2
+Ii(N, r, n)+

C
n2 , (10)

where we recognize

Ii(N, r, n)=−
2
n
5Ui(N, T0)+Ui(N, TR)+2 C

n − 1

l=1
Ui(N, Tl)6 (11)

and

C=
16
3

U'

i (N, y). (12)

The third term on the RHS of Eq. (10) is the IE, which is a systematic
error. Upon comparison of results obtained by using this expression with
exact results available in the literature, (3, 7) it is found that C varies only
slightly in the whole range of N considered here, which allows us to
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determine a value C % 2 from now on. Then IE is only a function of
parameter n, namely, IE 3 n−2.

We shall focus now on the second term of Eq. (10), explicitly given in
Eq. (11), which refers to energy. The error associated to the determination
of the average energy, DUi, can be estimated by the following expression:

DUi(N, T, r)=
Fi(T)

`Nr
. (13)

As is well known, (41) the probability distribution for intensive variables of
finite systems is given by a Gaussian function whose width is proportional
to N−1/2, which explains this factor in the previous equation. Similarly, the
statistical dispersion of the variable over r MCSs provides the r−1/2 depen-
dence. Finally, we include a proportionality factor, Fi(T), eventually
dependent on temperature.

Following the same arguments, the error in the integral given by
Eq. (10) is

DIi(N, r, n)=
Ai

`Nrn
, (14)

where Ai=`8OF2
i (T)Pn. Here O · · ·Pn means average over the n results,

one for each temperature of integration.
The previous treatment, as well as the one leading to the IE, represents

the error for just one sample. By taking into consideration M samples for
size N, we can write the following expression for average entropy:

SM(N)=SM(N, r, n) ±
A

`NrnM
+

C
n2 . (15)

Here, SM(N, r, n)=ln 2
2 +OIi(N, r, n)P is the value obtained by MC simula-

tions, in contrast with SM(N), which denotes the exact entropy value for
the set of M samples under consideration. A=OAiP is the average over M
samples. A numerical estimation of constant A obtained after comparison
with exact results allows us to report A % 2. The second term on the RHS
of Eq. (15) is the SE.

Our final goal is to write down an expression for the average entropy
S(N) including all sources of error previously depicted. From the universe
of all possible distributions of N F bonds plus N AF bonds, we have con-
sidered M samples at random. As the entropy per bond is an intensive
variable, arguments used previously lead to

S(N)=SM(N, r, n) ±
A

`NrnM
±

B

`NM
+

C
n2 , (16)
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where the term B/`NM represents the SAE. After comparing exact and
numerical results, it is found that B % 0.14.

Equation (16) allows us to choose the best set of parameters n, r, and
M leading to accurate calculation of the entropy S(N) according to the
computation time available. This will be done in the next section.

4. RESULTS AND DISCUSSIONS

In this section, we report results for the physical quantities described
in Section 2 using the methodology presented in the previous section. The
calculation of total energy, energy fluctuations, correlation functions, etc. is
rather straightforward by averaging over a large number of microscopic
configurations of the system. However, entropy is much more difficult to
evaluate. Moreover, an exact computation of remnant entropy requires an
exhaustive scanning of the GM, which cannot be directly computed for
fairly large lattices. Then, tackling the problem with reliable techniques to
produce average values of magnitudes upon increasing size, keeping
numerical errors under control, is a valid approximation. This can be even
more important if the present analysis is extended to three-dimensional
lattices.

The first quantity to be examined is the ground-state energy per bond
as a function of size N, which is presented in Fig. 2, where we show the
comparison between the present results obtained by the TIM (open
triangles) and exact values obtained using the hierarchical scheme EFIS
(represented by crosses). This last method is based on several numerical
algorithms which improve performance, allowing one to reach exact results
for ground-states of samples of intermediate size. The main stages of EFIS
are: Expansion, which produces replicas of a seed random state to a total
of N states so the Hamming distances are N/2 among all them (initializa-
tion of seed states continues until no new ground-states are found during a
substantial number of such generations); Fall or descent, which minimizes
the energy to reach a local minimum, so eventually a new ground-state is
found; Invasion, which advances to all ground-states connected to pre-
viously found ground-states at no energy cost; Spring, which ‘‘jumps’’ by
means of cellular automata from a set of interconnected ground-states to
another set of interconnected ground-states, separated by energy barriers
from the former. Interested readers are referred to ref. 7 for a more
complete description of the algorithm EFIS.

It is important to note that for small sizes in Fig. 2 (N between 16 and
81) each point was calculated by using both methods separately on the
same set of 500 samples for each size. The null error reported for the com-
parison between MC data and exact results means that the exact energy of
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Fig. 2. GM energy per bond as a function of N, the number of spins in the lattice, compar-
ing numerical results obtained by the TIM (open triangles) to exact results referred to in the
text (crosses). Independently, data based on sets of 2000 samples per size (solid circles) repre-
sent the main result of the numerical simulations discussed in the text (a total of 18,000 inde-
pendent samples were calculated to elaborate this figure). The dashed line is only a guide for
the eye.

the GM was reached in the numerical treatment for each of the 3000
samples (considering the six sizes for which this comparison is possible at
present). This exact match points to two important early conclusions to be
used in the rest of this work: (a) MC simulations can produce exact values
for ground-state energy if enough computer time is given; (b) in such a
case, the only error in the evaluation of the average energy is associated
with the set of representative samples. Then, by following same arguments
used for other sources of errors in the previous section, we can write:

U(N)=UM(N) ±
D

`NM
, (17)

where it is found that D % 0.23, as is obtained from the analysis of results
corresponding to distributions over sets of samples of different sizes. The
analysis of results of energy for larger samples (solid circles in Fig. 2) will
be done later on after discussing the entropy for small samples.

One of the most crucial points to be elucidated in the spin-glass simu-
lations is how to establish equilibration. This is even more important at low
temperature as well as for increasing lattice sizes. In our study, the required
ro MCSs for recovering the exact results of entropy were calculated and
stored for those values of N ranging from 16 to 81. For larger lattice sizes,
equilibration times were estimated by extrapolating from the comparison
with exact results. The accuracy and reliability of this extrapolation was
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tested by increasing ro by one order of magnitude without detecting any
alteration in the results for a subset of samples of each size. With this cri-
terion, ro goes from 103 for N=16 up to 106 for the largest lattices con-
sidered here, N=400. As is expected, larger values of ro are required upon
increasing the lattice size. After equilibration, r=2 × 104 MCSs were used
for averaging the desired quantities of interest.

Now we are ready to numerically calculate the entropy associated to
the GM of systems under consideration. For sizes under N=81, we use the
same set of samples previously calculated by means of EFIS. According to
the method discussed in Section 3, the entropy of the GM was obtained
after numerical integration of the expression on the RHS of Eq. (7) with
the following set of parameters: n=300 and r=2 × 104. Figure 3 shows
results of this procedure (open triangles) and those obtained via exact
computation of the whole set of states of the GM done by EFIS (crosses).
Direct comparison allows us to conclude that (a) the average error can be
estimated as % 10−5 and (b) for all considered sizes, MC average entropy
resulted in a lower value as compared with the exact one. On the other
hand, Eq. (15) predicts that the informed value of entropy is affected by an
SE (% ± 10−6) and an IE (% 10−5). It should be noted that the SE can be
neglected in comparison with IE. Then we conclude that the two main
sources of error lead to the same order of magnitude for systematic error
(10−5) affecting results produced by the MC data. This conclusion reinfor-
ces the validity of the arguments that accompanied the discussion leading
to formulating Eq. (15).

It is clear that an accurate determination of asymptotic values for U
and S in the thermodynamic limit requires going beyond N=81. There-
fore, the MC scheme emerges as a very important tool to reach this objec-
tive, expanding our capabilities for a deeper understanding of these
systems.

Analysis thus far was based on the comparison between the TIM and
EFIS for small sizes. After validating the TIM using exact results as a ref-
erence, we move on to grow in size with the aim of extracting general ten-
dencies toward the thermodynamic limit. We prepared 2000 samples for
each of the following sizes: 16, 25, 36, 49, 64, 81, 144, 256, and 400. In
Fig. 2, we represent the values for UM(N) obtained by MC simulation
(solid circles), using the same numerical values of parameters n and r
already validated for smaller samples. From these numerical data, we have
also extracted entropy SM(N) as a function of system size N. This is shown
by solid circles in Fig. 3. In both illustrations, a monotonic decrease is
clearly seen upon increasing size N. The reported values of energy U(N)
and entropy S(N) for each size, with their respective errors, are collected in
Table I. The main source of error in these data is associated with the SAE,
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Fig. 3. GM remnant entropy per bond as a function of the number of spins in the lattice, N.
Samples and symbols are the same as the corresponding ones in Fig. 2.

which is comparatively larger than all other types of error discussed here.
SAE is tabulated in Table I as function of size. This is precisely the reason
we increased to 2000 the number of samples per size for direct application
of the TIM (solid circles in Figs. 2 and 3).

In order to determine the asymptotic limit for U and S, two strategies
can be followed. The first one (not used here) assumes an empirical law for
the size dependence of U and S using appropriate fitting parameters. The
main disadvantage of this method is its strong dependence on the fitting
law that determines the asymptotic value. Several authors have chosen a
different technique, (16–21, 42) reporting the value of U and S for a large
enough sample in order to minimize finite size effects. From now on, we
follow this second strategy. From the analysis of Figs. 2 and 3 we can

Table I. Values for Energy U and Entropy S, with Their

Corresponding Errors DU and DS, for the Different Sizes

Reported in the Present Paper. M=2000 Samples for

Each Size Were Used in These Calculations

N U DU S DS

16 − 0.6551 ± 0.0013 0.0804 ± 0.0008
25 − 0.6768 ± 0.0010 0.0634 ± 0.0006
36 − 0.6817 ± 0.0009 0.0574 ± 0.0005
49 − 0.6879 ± 0.0007 0.0524 ± 0.0004
64 − 0.6917 ± 0.0006 0.0494 ± 0.0004
81 − 0.6929 ± 0.0006 0.0467 ± 0.0003

144 − 0.6963 ± 0.0004 0.0431 ± 0.0003
256 − 0.6982 ± 0.0003 0.0415 ± 0.0002
400 − 0.6982 ± 0.0001 0.0409 ± 0.0001
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conclude that the values of U and S stabilize for values of N % 200. There-
fore, we have used the maximum size that our present computing capabili-
ties allow, namely N=400, using n=300, r=2 × 104 and M=2000, which
ensures that the error is similar to the previous one. From the discussion
above we can assume that the combined error is no larger than O(10−4).
Then we can report the following values for energy and entropy, with their
corresponding errors, based on the analysis of samples 20 × 20:

U=−0.6982 ± 0.0001, (18)

S=0.0409 ± 0.0001. (19)

Previous results compare well with those reported in the literature
using different methodology. Thus, the most recent and exact value
reported for energy is U=−0.703, (42) which is very close (less than 0.6%
difference) to our result given above. Let us now move to a comparison of
entropy, which is the core of our paper. In Table II we list results for the
remnant entropy given in the literature, including in the last row our
present results, which compare well with previous results. The advantage of
a better and controlled accuracy can be appreciated. The spread of the dif-
ferent results of previous works reflects the difficulty of estimating the
whole degeneracy of the GM by means of different numerical techniques. It
should be noted that beyond the numerical agreement, the use of the TIM
becomes validated in the context of the present approach. It is very inter-
esting to note that our application of the TIM substantially improves the

Table II. Some of the Values for Remnant Entropy Reported in the Literature. The

Last Row Corresponds to the Calculations Reported Here

Authors S Method Lattice Size

Ref. 16 (1977) 0.050 TIM (low MCS’s) 80 × 80
Ref. 17 (1977) 0.035 Mixed 20 × 20 to 30 × 30
Ref. 18 (1980) 0.037 Transfer Matrix 16 × 16
Ref. 20 (1982) 0.040† Transfer Matrix 15 × 5 to 15 × 120
Ref. 19 (1983) 0.035 Transfer Matrix Long strips of width

from 3 up to 11
Ref. 21 (2001) 0.039 Ballistic-Search and CEA 20 × 20
Present paper 0.0409 TIM 20 × 20

† Estimated from the corresponding figure in ref. 20.
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early results obtained by this method, yielding numbers that compare well
with the rest of the proposals available in the literature.

5. CONCLUSIONS

In the present paper, we have discussed how the TIM can be used to
determine the characteristic features of the ground-state properties of ± J
Ising spin lattices. We have done simulations using a MC scheme to
implement an algorithm capable of determining the energy and the entropy
of the GM.

The applicability of the TIM has been tested and validated after a
systematic study which established criteria to increase accuracy and to
minimize sources of error. This was possible by comparing results of the
TIM to exact values for the same variables obtained on the same set of
samples of different sizes. By exact results we mean evaluation that is
possible after complete scanning of the 2W states of the GM. Despite the
fact that this calibration strategy can be used for small samples only, the
generality of the treatment ensures good convergence for larger sizes.
Nevertheless, for any extensive application of the TIM (as was done
above for larger sizes, for instance) the method can be adapted to
approach accurate results, identifying error sources and determining the
corresponding error bars.

Average results for energy and remnant entropy coming exclusively
from the TIM (solid circles in Figs. 2 and 3) not only compare well with
average results for exact solutions on sets of samples, but they are also in
good agreement with other calculations and general trends reported in the
literature. Moreover, the error associated to our calculations is similar to
or less than the error reported for other numerical calculations. The main
source of error is the sampling error associated to a representative set of
samples for each size. We have shown that 2000 randomly chosen samples
provide a margin of error of less than 10−4, which is good enough for
comparison with previous results using alternative methods reported in the
literature.

The strategy presented here for the analysis of ± J Ising spin lattices is
a very promising one. Three possible lines of action point toward further
applications of the TIM to present and other related systems: (1) to
improve accuracy towards the thermodynamic limit of square and other
two-dimensional lattices; (2) to help in the interpretation of the tempera-
ture evolution of several physical magnitudes (in particular, magnetic order
parameters associated with the unfrustrated bonds in the 2W degenerated
states of the GM) and (3) to extend this analysis to three-dimensional
systems. These studies are in progress.
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APPENDIX A

Let us begin with Eq. (5) in the main text, namely:

S(N, T) − S(N, TR)=
U(N, T)

T
−

U(N, TR)
TR

− F
1/T

1/TR

U(N, t) d 11
t
2 . (20)

If we write a Hamiltonian HŒ that differs from the original Hamiltonian H
by a constant which will be denoted h, that is to say:

HŒ=H − h, (21)

then,

UŒ(N, T)=U(N, T) − h. (22)

Combining Eq. (20) and Eq. (22) we can write

S(N, T) − S(N, TR)=
UŒ(N, T)

T
+

h
T

−
UŒ(N, TR)

TR
−

h
TR

− F
1/T

1/TR

UŒ(N, t) d 11
t
2− h F

1/T

1/TR

d 11
t
2 . (23)

The last integral can be evaluated immediately leading to:

S(N, T) − S(N, TR)=
UŒ(N, T)

T
+

h
T

−
UŒ(N, TR)

TR
−

h
TR

− F
1/T

1/TR

UŒ(N, t) d 11
t
2−

h
T

+
h

TR
, (24)

which takes us back to an equation formally identical to the initial one,
namely:

S(N, T) − S(N, TR)=
UŒ(N, T)

T
−

UŒ(N, TR)
TR

− F
1/T

1/TR

UŒ(N, t) d 11
t
2 . (25)

Previous analysis shows that an additive constant to the Hamiltonian does
not alter the evaluation of entropy.

We now choose the ground-state energy as an additive constant such
that

lim
T Q 0

UŒ(N, T)=lim
T Q 0

[U(N, T) − h]=0. (26)
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Under these circumstances, we want to determine the following limit:

lim
T Q 0

UŒ(N, T)
T

, (27)

which looks undefined at first glance. However, we can find such a limit
after working with the partition function of the system. Namely:

Z= C
.

i=0
gi exp 5−

H −

i

T
6 , (28)

where (a) this expression is evaluated in the thermodynamic limit (infinite
number of states), (b) gi and H −

i represent the degeneracy and energy of the
ith level, respectively, and (c) H −

o=0 (GM energy of the modified Hamil-
tonian).

The limit given by Eq. (27) is now written as

lim
T Q 0

UŒ(N, T)
T

= C
.

i=1

giH
−

i

go
lim
b Q .

3 b

exp[H −

ib]
4 (29)

where b=1
T .

By using the L’Hopital theorem for evaluating the RHS limit, we
obtain

lim
b Q .

3 b

exp[H −

ib]
4= lim

b Q .

3 1
H −

iexp[H −

ib]
4=0 for i > 0. (30)

This result helps to go back to Eq. (7) in the main text.

ACKNOWLEDGMENTS

We thank Fondecyt (Chile) for support under projects 1020993 and
7020993. Three authors (FR, FN and AR) thank CONICET (Argentina)
and Fundación Antorchas (Argentina) for partial support under project
13887-89. Two authors (F.R. and E.E.V.) thank the Millennium Scientific
Initiative (Chile) under contract P02-054-F for partial support.

REFERENCES

1. K. Binder and A. P. Young, Rev. Mod. Phys. 58:801 (1986).
2. M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World

Scientific, Singapore, 1987).
3. E. E. Vogel, J. Cartes, S. Contreras, W. Lebrecht, and J. Villegas, Phys. Rev. B 49:6018

(1994).

1340 Romá et al.



4. A. J. Ramirez-Pastor, F. Nieto, and E. E. Vogel, Phys. Rev. B 55:14323 (1997).
5. E. E. Vogel, S. Contreras, M. A. Osorio, J. Cartes, F. Nieto, and A. J. Ramirez-Pastor,

Phys. Rev. B 58:8475 (1998).
6. A. J. Ramirez-Pastor, F. Nieto, S. Contreras, and E. E. Vogel, Physica A 283:94 (2000).
7. A. J. Ramirez-Pastor, F. Nieto, and E. E. Vogel, Physica A 310:384 (2002).
8. A. K. Hartmann, Europhys. Lett. 40:429 (1997).
9. M. A. Moore, H. Bokil, and B. Drossel, Phys. Rev. Lett. 81:4252 (1998).

10. M. Palassini and A. P. Young, Phys. Rev. Lett. 83:5126 (1999).
11. K. F. Pál, Physica A 223:283 (1996).
12. A. K. Hartmann, Physica A 224:480 (1996).
13. A. K. Hartmann, J. Phys. A: Math. Gen. 33:657 (2000).
14. Z. F. Zhan, L. W. Lee, and J.-S. Wang, Physica A 285:239 (2000).
15. G. Hed, A. K. Hartmann, D. Stauffer, and E. Domany, Phys. Rev. Lett. 86:3148 (2001).
16. S. Kirkpatrick, Phys. Rev. B 16:4630 (1977).
17. J. Vannimenus and G. Toulouse, J. Phys. C 10:L537 (1977).
18. I. Morgenstern and K. Binder, Phys. Rev. B 22:288 (1980).
19. H.-F. Cheung and W. L. McMillan, J. Phys. C 16:7027 (1983).
20. A. J. Kolan and R. G. Palmer, J. Appl. Phys. 53:2198 (1982).
21. A. K. Hartmann, Phys. Rev. E 63:016106 (2001).
22. K. Binder, The Monte Carlo method for the study of phase transitions: A review of some

recent progress, J. Comput. Phys. 59:1 (1985).
23. S. F. Edwards and P. W. Anderson, J. Phys. F 5:965 (1975); G. Toulouse, Commun. Phys.

2:115 (1977).
24. I. Morgenstern and K. Binder, Phys. Rev. Lett. 43:1615 (1979).
25. K. H. Fisher and J. A. Hertz, Spin Glasses, Cambridge Studies in Magnetism I

(Cambridge University Press, Cambridge, 1991).
26. Z. Salsburg, J. Jacobsen, W. Fickett, and W. Wood, J. Chem. Phys. 30:65 (1959).
27. S. K. Ma, J. Stat. Phys. 26:221 (1981).
28. Z. Alexandrowicz, J. Chem. Phys. 55:2765 (1971).
29. H. Meirovitch, Chem. Phys. Lett. 45:389 (1977).
30. C. H. Bennett, J. Comput. Phys. 22:245 (1976).
31. J. P. Valleau and D. N. Card, J. Chem. Phys. 57:5457 (1972).
32. G. Torrie and J. P. Valleau, Chem. Phys. Lett. 28:578 (1974).
33. K. Binder, J. Stat. Phys. 24:69 (1981); Z. Phys. B 45:61 (1981).
34. T. L. Polgreen, Phys. Rev. B 29:1468 (1984).
35. F. Romá, A. J. Ramirez-Pastor, and J. L. Riccardo, Langmuir 16:9406 (2000).
36. F. Romá, A. J. Ramirez-Pastor, and J. L. Riccardo, J. Chem. Phys. 114:10932 (2001).
37. K. Kawasaki, in Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and

M. Green, eds. (Academic, London, 1972).
38. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

J. Chem. Phys. 21:1087 (1953).
39. K. Binder, Applications of the Monte Carlo Method in Statistical Physics. Topics in

Current Physics, Vol. 36 (Springer, Berlin, 1984), p. 23.
40. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in

C++, 2nd edn. (Cambridge University Press, London, 2002).
41. R. Brout, Phys. Rev. 115:824 (1959).
42. R. G. Palmer and J. Adler, Int. J. Mod. Phys. C 10:667 (1999).

Ground-State Entropy of ±J Ising Lattices by Monte Carlo Simulations 1341


	1. INTRODUCTION
	2. pm J ISING LATTICES
	3. THERMODYNAMIC INTEGRATION METHOD
	4. RESULTS AND DISCUSSIONS
	5. CONCLUSIONS
	6. APPENDIX
	ACKNOWLEDGMENTS

